Inactivation of AMPK mediates high phosphate-induced extracellular matrix accumulation via NOX4/TGFß-1 signaling in human mesangial cells.
نویسندگان
چکیده
BACKGROUND/AIMS High phosphate (Pi) levels and extracellular matrix (ECM) accumulation are associated with chronic kidney disease progression. However, how high Pi levels contribute to ECM accumulation in mesangial cells is unknown. The present study investigated the role and mechanism of high Pi levels in ECM accumulation in immortalized human mesangial cells (iHMCs). METHODS iHMCs were exposed to normal (0.9 mM) or increasing Pi concentrations (2.5 and 5 mM) with or without diferent blockers or activators. NOX4, phosphorylated AMPK (p-AMPK), phosphorylated SMAD3 (p-SMAD3), fibronectin (F/N), collagen IV (C-IV) and alpha-smooth muscle actin (α-SMA) expression was assessed via western blot and immunofluorescence. Lucigenin-enhanced chemiluminescence, and dihydroethidium (DHE) assessed NADPH oxidase activity and superoxide (SO), respectively. RESULTS In iHMCs, a Pi transporter blocker (PFA) abrogated high Pi-induced AMPK inactivation, increase in NADPH oxidase-induced reactive oxygen species (ROS) levels, NOX4, p-SMAD3, α-SMA and C-IV expression. AMPK activation by AICAR, NOX4 silencing or NADPH oxidase blocker prevented high Pi-induced DHE levels, p-SMAD3, F/N, C-IV and α-SMA expression. CONCLUSION AMPK inactivation with NOX4-induced ROS formation and transforming growth factor ß-1 (TGFß-1) signaling activation mediates high Pi-induced ECM accumulation in iHMCs. Maneuvers increasing AMPK or reducing NOX4 activity may contribute to renal protection under hyperphosphatemia.
منابع مشابه
HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice
Hypoxia-inducible factor (HIF)-1 mediates hypoxia- and chronic kidney disease-induced fibrotic events. Here, we assessed whether HIF-1 blockade attenuates the manifestations of diabetic nephropathy in a type 1 diabetic animal model, OVE26. YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole], an HIF-1 inhibitor, reduced whole kidney glomerular hypertrophy, mesangial matrix expansion, extracel...
متن کاملAlpha Lipoic Acid Modulated High Glucose-Induced Rat Mesangial Cell Dysfunction via mTOR/p70S6K/4E-BP1 Pathway
The aim of this study was to investigate whether alpha lipoic acid (LA) regulates high glucose-induced mesangial cell proliferation and extracellular matrix production via mTOR/p70S6K/4E-BP1 signaling. The effect of LA on high glucose-induced cell proliferation, fibronectin (FN), and collagen type I (collagen-I) expression and its mechanisms were examined in cultured rat mesangial cells by meth...
متن کاملHMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced "inside-out" signaling to extracellular matrix by preventing RhoA activation.
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors exert modulatory effects on a number of cell signaling cascades by preventing the synthesis of various isoprenoids derived from the mevalonate pathway. In the present study, we describe a novel pleiotropic effect of HMG-CoA reductase inhibitors, also commonly known as statins, on vascular endothelial growth factor (VEGF)-i...
متن کاملHexosamines and TGF-beta1 use similar signaling pathways to mediate matrix protein synthesis in mesangial cells.
Hyperglycemia-induced alterations in mesangial (MES) cell function and extracellular matrix (ECM) protein accumulation are seen in diabetic glomerulopathy. Transforming growth factor-beta1 (TGF-beta1) mediates high-glucose-induced matrix production in the kidney. Recent studies demonstrated that some of the effects of high glucose on cellular metabolism are mediated by the hexosamine biosynthes...
متن کاملGLUT1 enhances mTOR activity independently of TSC2 and AMPK.
Enhanced GLUT1 expression in mesangial cells plays an important role in the development of diabetic nephropathy by stimulating signaling through several pathways resulting in increased glomerular matrix accumulation. Similarly, enhanced mammalian target of rapamycin (mTOR) activation has been implicated in mesangial matrix expansion and glomerular hypertrophy in diabetes. We sought to examine w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 34 4 شماره
صفحات -
تاریخ انتشار 2014